MIDTERM EXAMINATION

FORM

1. The following function, f, maps the real line into itself. $f: R \rightarrow R$. We must decide if it is continuous at $\mathrm{x}=0$. Please choose between two proposed answers below. Explain your choice.

$$
\begin{aligned}
& \text { For } x<0, f(x)=x \\
& x=0, f(x)=0 \\
& x>0, f(x)=2 x
\end{aligned}
$$

Proposed answer A: Yes the function is continuous at 0 . For any $\varepsilon>0$, choose $\delta=.3 \varepsilon$. Then for any x in the neighborhood of $0,|0-x|<\delta$, $|f(x)-f(0)| \leq|2 x-0|<2 \delta=.6 \varepsilon<\varepsilon$. This is the definition of continuity. Proposed answer B: No the function is not continuous at 0 . It makes a jump in the neighborhood of $x>0$. For $2>\varepsilon>0$, there is no $\delta>0$, such that for $x>0$ with $|x-0|<\delta$, it follows that $|f(x)-f(0)|<\varepsilon$. Instead we have $|f(x)-f(0)| \geq 2>\varepsilon$.

Problem 2 below treats allocation in an Edgeworth Box. There are two households, denoted 1 and 2, two goods denoted x and y. The two households have identical preferences denoted by the utility function $\mathbf{U}(\mathbf{x}, \mathrm{y})=\mathrm{x} \cdot \mathrm{y}$. For any consumption plan (x, y), with x and $y>0$, the household's marginal rate of substitution, $\partial \mathrm{U}$
MRS $_{x, y}=\frac{\frac{\partial \mathrm{x}}{\partial \mathrm{U}}}{\frac{\mathrm{U}_{\mathrm{x}}}{\partial \mathrm{y}}}=\frac{\mathrm{y}}{\mathrm{U}_{\mathrm{y}}}$.
Household 1's endowment is $r^{1}=(\mathbf{6 0 , 0})$; household 2's endowment is $r^{2}=(60,60)$.
2. The Walrasian auctioneer proposes the price vector

$$
p=\left(p_{x}, p_{y}\right)=(1 / 3,2 / 3) \text {. In order for this to be a competitive }
$$ equilibrium price vector there must be a consumption plan $\left(x^{1}, y^{1}\right),\left(x^{2}, y^{2}\right)$ for each household that fulfills budget constraint, optimizes utility subject to budget constraint, and clears the market. Consider $\left(x^{1}, y^{1}\right)=(30,15)$, $\left(x^{2}, y^{2}\right)=(90,45)$. Demonstrate that this allocation is a competitive equilibrium.

3. The Brouwer Fixed Point Theorem can be applied to the closed unit interval in $R,[0,1]=\{x \mid x \in R, 0 \leq x \leq 1\}$. Then we say,
Let $f:[0,1] \rightarrow[0,1], f$ continuous on $[0,1]$, then there is x^{*} in $[0,1]$ so that $f\left(x^{*}\right)=x^{*}$.
Demonstrate that this statement is not true (that is, the fixed point may not exist) when we revise the domain and range to the open unit interval $(0,1)=\{x \mid x \in R, 0<x<1\}$. That is, show that the following statement is false: Let $f(0,1) \rightarrow(0,1), f$ continuous on $(0,1)$, then there is x^{*} in $(0,1)$ so that $f\left(x^{*}\right)=x^{*}$.

A counterexample with an explanation is sufficient.
Hint: Consider $f(x)=.5+.5 x . f:(0,1) \rightarrow(0,1)$. Use a proof by contradiction. Suppose there is $x^{*}=f\left(x^{*}\right)=.5+.5 x^{*}$. Then $.5 x^{*}=.5$, and $x^{*}=1$. Is this a contradiction? Explain.
4. A subset S of $\mathbf{R}^{\mathbf{N}}$ is said to be "closed" if it contains all its limit points --that is, if every convergent sequence in S has its limit point in S. A subset S of $\mathbf{R}^{\mathbf{N}}$ is said to be "bounded" if it can be contained in a cube (centered at the origin) with a side of finite length. A subset S of $\mathbf{R}^{\mathbf{N}}$ is said to be "convex," if --- for every choice of two point of S ---- the line segment connecting the two points is contained in S .

Consider $\mathbf{R}^{\mathbf{N}}$ as a subset of $\mathbf{R}^{\mathbf{N}}$.
(a) Is $\mathbf{R}^{\mathbf{N}}$ closed? Give an explanation of your answer, or an example illustrating it.
(b) Is $\mathbf{R}^{\mathbf{N}}$ bounded? Give an explanation of your answer, or an example illustrating it.
(c) Is $\mathbf{R}^{\mathbf{N}}$ convex? Give an explanation of your answer, or an example illustrating it.

